首页

欢迎

 

Welcome

欢迎来到这里, 这是一个学习数学、讨论数学的网站.

转到问题

请输入问题号, 例如: 2512

IMAGINE, THINK, and DO
How to be a scientist, mathematician and an engineer, all in one?
--- S. Muthu Muthukrishnan

Local Notes

Local Notes 是一款 Windows 下的笔记系统.

Local Notes 下载

Sowya

Sowya 是一款运行于 Windows 下的计算软件.

详情

下载 Sowya.7z (包含最新版的 Sowya.exe and SowyaApp.exe)


注: 自 v0.550 开始, Calculator 更名为 Sowya. [Sowya] 是吴语中数学的发音, 可在 cn.bing.com/translator 中输入 Sowya, 听其英语发音或法语发音.





注册

欢迎注册, 您的参与将会促进数学交流. 注册

在注册之前, 或许您想先试用一下. 测试帐号: usertest 密码: usertest. 请不要更改密码.


我制作的 slides

Problem

随机显示问题

Problèmes d'affichage aléatoires

数论 >> 一般数论 >> 初等数论
Questions in category: 初等数论 (Elementary Number Theory).

等幂和

Posted by haifeng on 2023-01-30 10:51:37 last update 2023-01-30 21:14:55 | Answers (0)


 

\begin{aligned}
3^3 + ... + 5^3 &= 6^3,\\
3^3 + ... + 22^3 &= 40^3,\\
6^3 + ... + 30^3 &= 60^3,\\
6^3 + ... + 69^3 &= 180^3,\\
11^3 + ... + 14^3 &= 20^3,\\
15^3 + ... + 34^3 &= 70^3,\\
\end{aligned}

 

\(\sum_{k=1}^{n^3}(\frac{n^4-3n^3-2n-2}{6}+k)^3=(\frac{n^5+n^3-2n}{6})^3\)

 


利用 Calculator 计算.

>> solve_n3plus_until_M3_eq_p3(1,1000)
in> solve_n3plus_until_M3_eq_p3(1,1000)
out>
3^3 + ... + 5^3 = 6^3
3^3 + ... + 22^3 = 40^3
6^3 + ... + 30^3 = 60^3
6^3 + ... + 69^3 = 180^3
11^3 + ... + 14^3 = 20^3
11^3 + ... + 109^3 = 330^3
15^3 + ... + 34^3 = 70^3
34^3 + ... + 158^3 = 540^3
213^3 + ... + 365^3 = 1581^3
213^3 + ... + 555^3 = 2856^3
273^3 + ... + 560^3 = 2856^3
291^3 + ... + 339^3 = 1155^3
406^3 + ... + 917^3 = 5544^3
556^3 + ... + 654^3 = 2805^3
646^3 + ... + 798^3 = 3876^3

---------
Total: 15 solutions.


------------------------

 

>> solve_n3plus_until_M3_eq_p3(10000,11000)
in> solve_n3plus_until_M3_eq_p3(10000,11000)
out>

---------
Total: 0 solutions.


------------------------

 

 


References:

等幂和问题(5)—— 3³+4³+5³=6³ 绝非巧合! - 知乎 (zhihu.com)